58 CUIVRE RIVER BASIN ## 05514500 CUIVRE RIVER NEAR TROY, MO--Continued (Ambient water-quality monitoring network) ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- 1983 water year to current year. REMARKS.--National stream-quality accounting network station October 1986 through September 1994. Ambient water-quality monitoring network station October 1994 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm
(00095) | FIELI
(STANI
ARD
) UNITS | TUR-
D- BID-
ITY
(NTU) | OXYGEN
DIS-
SOLVE
(mg/L
(00300 | CENT
D SATUR-
) ATION) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (mg/L) (00340) | COLI-
FORM,
FECAL,
0.7
µM-MF
(COLS./
100 mL)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 mL)
(31673) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 mL)
(31633) | |--|--|---|--|--|--|---|---|--|--|---|---|--| | NOV
13
JAN
13
MAR
18
MAY
06
JUL
27
SEP | 1220 | 35 | 5.1 | 260 | 7.12 | | 12.0 | 94 | 10 | 44 | 44 | 43 | | | 0940 | 346 | .9 | 300 | 7.88 | | 13.5 | 93 | | K260 | 1900 | 540 | | | | | | | | | | 87 | | | | | | | 1015 | 9220 | 5.2 | 150 | 7.66 | | 11.3 | | | K12000 | 3100 | 3600 | | | 0820 | 334 | 17.1 | 330 | 7.79 | | 8.3 | | <10 | 140 | 80 | 140 | | | 1545 | 83 | 27.9 | 400 | 7.52 | | | | | 92 | | 96 | | 02 | 0750 | 30 | 23.6 | 378 | 7.58 | 6. | 5 6.0 | 71 | | 180 | 960 | 210 | | DATE | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | NITRO
GEN,
NO ₂ +NO
DIS-
SOLVE
(mg/1
as N | GEN 3 NITRIT DIS- D SOLVE L (mg/) as N | GEN, CE AMMONI DIS- DIS- D SOLVE (mg/I) as N) | GEN,AM A MONIA ORGANI D DIS. L (mg/I as N) | H- PHOS-
+ PHORUS
C DIS-
SOLVED
L (mg/L
as P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | | NOV
13
JAN
13
MAR
18
MAY
06
JUL
27 | 138 | 180 | 0 | .6 | 2 | 02 <.0 | 2 .5 | 5 .03 | 3 .03 | 150 | 45 | 8.3 | | | 98 | 120 | 0 | 1.8 | . (| 01 .0 | 8 .4 | 1 .12 | 2 .13 | 120 | 38 | 6.1 | | | 48 | 58 | 0 | 1.1 | . (| 01 .0 | 9 .6 | 5 .16 | 5 .14 | 57 | 18 | 3.1 | | | 130 | 160 | 0 | | | | | | | 150 | 48 | 7.1 | | | 162 | 198 | 0 | .3 | 4 <.0 | 01 <.0 | 2 .7 | 7 <.01 | <.01 | 180 | 58 | 9.1 | | SEP
02 | 174 | 213 | 0 | .1 | 6 | 02 .0 | | ł <.01 | L <.01 | 190 | 59 | 9.3 | | DA | D:
SOI
TE (r
as | DIUM,
IS-
LVED S
mg/L (
s Na) a | DIS-
SOLVED
mg/L
is K) a | ULFATE DIS- SOLVED (mg/L s SO ₄) 00945) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SILICA,
DIS-
SOLVED
(mg/L
as
SiO ₂)
(00955) | RESIDUE
AT 180 | CONSTI-
TUENTS,
DIS-
SOLVED
(mg/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | | NOV
13 | . 1 | 1 | 5.9 | 16 | 17 | .1 | | 221 | 193 | 20.9 | 14 | 290 | | JAN
13 | . 8 | 8.2 | 4.5 | 19 | 15 | . 2 | 11 | 190 | 169 | 177 | | | | MAR
18 | . 4 | 4.5 | 3.6 | 9.9 | 6.9 | .1 | 7.6 | 124 | 87 | 3090 | | | | MAY
06 | . 9 | 9.1 | 3.4 | 22 | 11 | <.1 | | 211 | 176 | 190 | 31 | 640 | | JUL
27 | . 9 | 9.0 | 4.3 | 20 | 12 | .1 | 8.7 | 246 | 219 | 55.1 | | | | SEP
02 | . 9 | 9.7 | 4.5 | 16 | 12 | . 2 | 9.0 | 240 | 226 | 19.4 | | | | | | | | | | | | | | | | | | DA | II
I
SC
TE (µ
as | NUM, W
DIS- UN
DLVED T
ug/L (
s Al) a | FLTRD
OTAL
μg/L
us Cd) | ADMIUM DIS- SOLVED (µg/L as Cd) 01025) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | MERCURY TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | | NOV
13
MAY | . 5 | 50.7 | <1 | <1 | <10 | 120 | <1 | <100 | 180 | <.1 | <10 | <3 | | 06 | . 12 | 23 | <1 | <8 | <10 | 110 | <1 | <100 | 140 | <.1 | <10 | <20 | K--Results based on colony count outside the acceptable range (non-ideal colony count).